The leading voice for the crushed stone, ready mixed concrete, sand and gravel, and cement industries' community.
PELA is a 10-month hybrid program with online and in-person educational sessions and networking opportunities.
Careers in the Aggregates, Concrete & Cement Industries
The Pennsylvania Aggregates and Concrete Association (PACA) is the industry’s unified voice, representing more than 200 member companies across the state.
Creating a unified and strong voice for our industry.
PACA monitors and analyzes local, state and federal regulations and advocates for a balanced approach by the regulators.
PACA builds a bridge between our members and our partners at PennDOT, and the Pennsylvania Turnpike Commission along with Pennsylvania’s construction industry to further the use of our materials to the benefit of the commonwealth.
One of the most effective tools in government relations for an industry is a robust advocacy/grassroots strategy.
In the last legislative session, we contributed over $275,000 to our political champions.
November 2025 at Hotel Hershey in Hershey, PA (PACA members only event).
PACA offers comprehensive concrete certification programs for ACI, NRMCA, and PennDOT in the central Pennsylvania area.
Membership has its privileges - most of PACA's events are open to PACA members only.
PACA conducts numerous education and training events during the year.
Choose concrete for your next parking lot project.
Streets built with concrete are built to last, consider concrete for your next project.
Concrete's strong, resilient and the choice for your next building or bridge.
PACA works with the National Ready Mixed Concrete Association (NRMCA) to convert your parking lot or building project to concrete without hurting your bottom line.
PACA drives a member-approved strategic plan to increase market share and engages specifiers and owners on the value of concrete in their projects.
This program provides free continuing education to the design and specifying communities. There are currently four courses available, ranging from 30 minutes to 60 minutes focused on the cement, aggregates and concrete industries. You'll receive a certificate of completion once you pass a quiz. The bookmarking feature allows you to leave the course and resume where you left off when you return.
Simply put, maturity is a real-time approach to estimating the compressive strength of in-place concrete, and relating it to the effects of temperature and time.
This process is used to measure the progression of the curing process; it is an accurate indexing method of figuring out the strength of the concrete, while it cures.
The maturity method, often just called maturity, carries out strength testing in a non-destructive manner, making it ideal for use by builders, suppliers, and subcontractors. It is the perfect way of conducting quick evaluations to determine the exact instant at which the concrete reaches its required strength.
Since maturity is directly related to the strength and durability of the concrete, this method is the best way to measure it without depending on standard laboratory testing, or using test specimens. It can virtually eliminate the use of concrete cylinder break testing, with the exception of breaking cylinders as a means of verification.
The standard practice for measuring maturity is designated ASTMC1074. The method is defined as “a technique for estimating concrete strength that is based on the assumption that samples of a given concrete mixture attain equal strengths if they attain equal values of the maturity index.”
When concrete cures, it gives off heat energy that is directly proportional to the rate of curing. Through the maturity method, the subsequent rise in temperature can be recorded, and included in the report.
Since concrete mixes have differing strength-maturity relationships, the maturity method can be used to determine the strength of a particular kind of mix.
The maturity index value requires mix calibration to be implemented. It is the role of this calibration to define the exact relationship between the concrete’s strength, and maturity.
As a part of this process, data collection is carried out by wireless concrete maturity sensors. These sensors measure the temperature of the curing concrete, and compare them to the previously acquired calibrations to measure strength.
As an additional advantage, these sensors can be connected to any smart device, transmitting the data instantly to your medium of choice without the need for an expensive data logger.
The ASTM C1074 standard recommends these steps be followed to achieve the calibrate mix:
The maturity method allows evaluation of concrete strength at a specific time – it is a precise and time sensitive way of measuring the strength of concrete.
Concrete Maturity leads to better quality control and assurance since there is minimal reliance on the preparation and testing of concrete cylinders. The proper care and handling of concrete cylinders is critical to the accuracy of strength testing results. Unfortunately, that aspect of concrete testing is sometimes overlooked. To learn more about concrete cylinder curing please click here.
Listed below are just a few of the various areas of application that benefit from the maturity method.
February 22, 2024
Proficient carbon calculations are increasingly important as “Buy Clean” legislation proliferates. New York and Colorado are among the states that now require carbon calcs for public projects. An estimated 40% of emissions are from the built environment. According to one estimate, the planet’s total building floor area will double by 2060. This makes the concrete industry a key player in the quest for net-zero emissions products and projects.
February 15, 2024
The Natural Resources Defense Council (NRDC) notes that cement production is “so carbon intensive that even though cement makes up less than 15% of concrete by weight, it accounts for 90% of concrete’s carbon footprint.” The use of fossil fuels to fire cement kilns is a key source of these carbon emissions.
February 08, 2024
In the quest for reduced greenhouse gas (GHG) emissions, everyone has a role to play. In the concrete industry, this includes everyone from manufacturers to contractors, and from trade associations to governments. Here is a review of some of the major initiatives impacting concrete’s sustainability.
February 01, 2024
Ordinary Portland cement (OPC) requires high-temperature calcination of limestone. It is possible to use various emissions-reducing pozzolans in concrete. Fly ash comes from coal-fired power plants. Ground granulated blast furnace slag (GGBFS) comes from steel mills. Another SCM is metakaolin derived from kaolin.
The program is delivered in one (1) module and it should take approximately 30 minutes to complete. You will receive a certificate of completion once you pass the quiz. The bookmarking feature will allow you to leave the course and resume where you left off when you return.