The leading voice for the crushed stone, ready mixed concrete, sand and gravel, and cement industries' community.
PELA is a 10-month hybrid program with online and in-person educational sessions and networking opportunities.
Careers in the Aggregates, Concrete & Cement Industries
The Pennsylvania Aggregates and Concrete Association (PACA) is the industry’s unified voice, representing more than 200 member companies across the state.
Creating a unified and strong voice for our industry.
PACA monitors and analyzes local, state and federal regulations and advocates for a balanced approach by the regulators.
PACA builds a bridge between our members and our partners at PennDOT, and the Pennsylvania Turnpike Commission along with Pennsylvania’s construction industry to further the use of our materials to the benefit of the commonwealth.
One of the most effective tools in government relations for an industry is a robust advocacy/grassroots strategy.
In the last legislative session, we contributed over $275,000 to our political champions.
November 2025 at Hotel Hershey in Hershey, PA (PACA members only event).
PACA offers comprehensive concrete certification programs for ACI, NRMCA, and PennDOT in the central Pennsylvania area.
Membership has its privileges - most of PACA's events are open to PACA members only.
PACA conducts numerous education and training events during the year.
Choose concrete for your next parking lot project.
Streets built with concrete are built to last, consider concrete for your next project.
Concrete's strong, resilient and the choice for your next building or bridge.
PACA works with the National Ready Mixed Concrete Association (NRMCA) to convert your parking lot or building project to concrete without hurting your bottom line.
PACA drives a member-approved strategic plan to increase market share and engages specifiers and owners on the value of concrete in their projects.
This program provides free continuing education to the design and specifying communities. There are currently four courses available, ranging from 30 minutes to 60 minutes focused on the cement, aggregates and concrete industries. You'll receive a certificate of completion once you pass a quiz. The bookmarking feature allows you to leave the course and resume where you left off when you return.
Self-consolidating concrete (SCC), also known as self-compacting concrete, is a flowable, non-segregating product that spreads into position. It fills congested formwork without mechanical vibration. It readily flows into complex shapes and inaccessible areas, minimizing voids in the process.
In the late 1980s, Japanese researchers developed SCC to address problems with concrete durability, particularly in thin, complex walls with dense rebar placements. Contractors collaborated with experts from academia to identify viscosity modifiers that improved concrete consolidation in such applications. SCC's history also included early adoption in Scandinavia, spurred by the ready availability of pozzolans and fine limestone powder.
The use of SCC is increasingly popular in the production of:
In precast production, compressive strengths in the 3,500-14,000 psi range allow use in everything from bridge beams and double tees to manholes and septic tanks. SCC improves precast productivity by enhancing automation, and it limits healthy and safety issues in the plant, including those associated with the use of vibration.
Designers, developers and contractors increasingly embrace the benefits of SCC for a variety of reasons.
Self-leveling, self-consolidating concrete reduces the labor required to place and finish it. It eliminates mechanical vibration and reduces screeding, Eliminating vibration in precast production settings reduces noise. In an urban setting, decreased noise may even allow for longer construction hours. The decreased need for consolidation can also enhance job site safety. SCC reduces capital and maintenance costs by reducing the overall need for vibration equipment and formwork.
SCC's impressive flowability promotes successful consolidation around dense, concentrated reinforcement. For example, SCC makes it possible to successfully fill areas unreachable with internal poker vibrators. It allows for denser reinforcement, adding strength in the process.
SCC's flowability reduces finishing requirements. You'll need less sack rubbing and remedial work. Architects enjoy increased freedom of design for a number of reasons, including increased options in formwork orientation. SCC can also be placed in intricate molds that would not work with conventional concrete. Given its uniformity and homogeneity, it is possible to use SCC to create smooth finishes and precise textures with relative ease.
Higher slumps and excellent flowability promote easier pumping, including pumping to substantial heights. Quicker truck-to-pump discharge speeds construction.
When you use SCC, both direct and indirect cost savings accrue from:
According to the NRMCA, SCC flowability is measured through a modified version of ASTM C 143. Slump flow typically ranges from 18 to 32 inches. At these slump flow levels, SCC will self-level and readily encapsulate dense formwork. As flowable as it is, SCC is still very cohesive. Bleeding is minimal, and segregation does not occur. Aggregates do not get caught behind obstructions in a way that would prevent proper consolidation. Fine edge detail is possible thanks in part to shrinkage as low as 0.032 percent. SCC also delivers chloride permeability levels to 630 coulombs.
Flow requirements impact water content. High-performance SCC often has a w/c ratio of less than 0.40, although ratios can often be increased to achieve desired flows. It is possible to achieve high flow rates through the liberal use of fine inert powders such as limestone. Pozzolans like fly ash and ground granulated blast furnace (GGBF) slag are also incorporated into some SCC mixes. You'll also find superplasticizers and non-gap-graded, combined aggregates in varying SCC mixes.
Here are two case studies of major projects where self-consolidating concrete was used. One is in Pennsylvania, the other in our nation's capital.
The 58-story, 974-foot Comcast Tower is the second tallest structure in Philadelphia. Construction of the LEED Gold-certified skyscraper began in 2005, and concrete placement concluded in late 2006. Three different SCC mixes were used - 6,000, 8,000 and 10,000 psi. The center-core construction ultimately consumed more than 40,000 cubic yards of SCC.
The project benefited from the various advantages of SCC, including:
During the final phase of construction, pumping heights exceeded 900 vertical feet. Field-cured cylinders measured compressive strengths of 8,560 psi at seven days and 12,720 psi at 28 days. At 56 days, flexural tensile strength was 1,560 psi.
The National Museum of the American Indian was dedicated in 2004. Architects commissioned to design the Smithsonian museum wanted the structure to resemble rock sculpted over the eons by water and wind.
The use of concrete vibrators would have been problematic because they could have blown out the custom-built formwork. Specifying SCC also cut the time to fabricate formwork from five to just two days. Ultimately, more than 3,000 cubic yards of SCC was used to create a non-repeating, exposed concrete exterior with no right angles.
The Pennsylvania Aggregates and Concrete Association (PACA) embraces its mission to educate stakeholders about the new and expanding uses of concrete, including SCC. For additional information pertinent to your upcoming project, please contact us.
February 22, 2024
Proficient carbon calculations are increasingly important as “Buy Clean” legislation proliferates. New York and Colorado are among the states that now require carbon calcs for public projects. An estimated 40% of emissions are from the built environment. According to one estimate, the planet’s total building floor area will double by 2060. This makes the concrete industry a key player in the quest for net-zero emissions products and projects.
February 15, 2024
The Natural Resources Defense Council (NRDC) notes that cement production is “so carbon intensive that even though cement makes up less than 15% of concrete by weight, it accounts for 90% of concrete’s carbon footprint.” The use of fossil fuels to fire cement kilns is a key source of these carbon emissions.
February 08, 2024
In the quest for reduced greenhouse gas (GHG) emissions, everyone has a role to play. In the concrete industry, this includes everyone from manufacturers to contractors, and from trade associations to governments. Here is a review of some of the major initiatives impacting concrete’s sustainability.
February 01, 2024
Ordinary Portland cement (OPC) requires high-temperature calcination of limestone. It is possible to use various emissions-reducing pozzolans in concrete. Fly ash comes from coal-fired power plants. Ground granulated blast furnace slag (GGBFS) comes from steel mills. Another SCM is metakaolin derived from kaolin.
The program is delivered in one (1) module and it should take approximately 30 minutes to complete. You will receive a certificate of completion once you pass the quiz. The bookmarking feature will allow you to leave the course and resume where you left off when you return.